skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gautam, Arnav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sustained power outages are growing in scale and number primarily due to i) the increasing number and intensity of disasters and ii) decarbonization- and electrification-related grid changes. Outage mitigation technologies (e.g., backup diesel generators, and solar panels) increasingly provide vital electricity access during disasters. However, their adoption is inequitable due to individual- or community-level barriers and historic underinvestment in certain communities. We postulate that community-based Resilience Hubs (RHs), which are being increasingly deployed to provide on-site services during disasters, can be expanded to address this inequity by supplying backup power to vulnerable communities through islanded operations. To that end, we present Grid-Aware Tradeoff Analysis (GATA) framework to identify the best backup power systems for expanded RHs. To include technical, economic, and social facets in the framework, we will use three-phase power flow (TPF) and multi-criteria decision analysis (MCDA). TPF will enforce the electrical feasibility of islanded RH operation, and MCDA will quantify the economic, environmental, and equity-weighted outage mitigation performance. As a use case for GATA, we will evaluate multiple representative RHs in Richmond, California, and highlight the non-dominated systems for the electrically feasible RHs. We show the value of GATA's detailed grid simulation, its ability to quantify tradeoffs across scenarios, and its possible extensions. 
    more » « less